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Abstract
We investigate temporal association in a set of globally coupled neuronal
oscillators, which retrieves time sequences of stored patterns. The asymmetry-
to-symmetry ratio in the synaptic coupling as well as the total strength turns out
to play a major role in these phenomena. By means of numerical simulations,
we identify four different states: the memory-retrieval state, the temporal-
association state, the mixed-memory state and the no-memory state, and obtain
the corresponding phase boundaries on the plane of the asymmetry ratio and
the coupling strength.

PACS numbers: 0545X, 0510G, 0705M, 8435, 8718S

1. Introduction

The oscillatory behaviours of neurons are believed to play important roles in information
processing in biological systems [1, 2]. In general an assembly of oscillators with distributed
natural frequencies can exhibit a coherent motion among the constituents, called collective
synchronization [3, 4]; such synchronization observed in the cortex suggests that information
processing is cooperative, involving many neurons. This has led to many attempts to explain
such intriguing features of a brain as learning and memory in terms of collective properties of a
network of neurons [5]. Among these, the associative memory, the function of which is to store
and recall information in association with other information [6–8], and temporal association,
which retrieves a sequence of embedded patterns successively [9,10], have been much studied.
Such recalling of temporal sequences can be endowed by introducing asymmetry in the synaptic
coupling of the neural network, which may prevent the system from relaxing to the state of
the minimum energy function. Most of these studies have been based on the Ising-type model
of neural networks, where each neuron is considered to have two possible states [11]. In the
phase model of neural networks, on the other hand, each neuron is regarded as a limit-cycle
oscillator and its state described by the phase [12]. This is more convenient for addressing
the oscillatory behaviour and naturally exhibits synchronization as a mechanism for memory
storage.

1 Present address: Palm Palm Technology Inc., Seoul 150-748, Korea.
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This paper presents an attempt to observe the temporal-association phenomena in the
network of limit-cycle neuronal oscillators. We introduce asymmetry in the coupling and
obtain the self-consistency equation for the order parameter, on the basis of which the collective
synchronization behaviour is investigated. Particular attention is paid to the interplay of the
symmetric coupling and the asymmetric one, and the schematic phase boundaries are obtained
numerically on the plane of the asymmetry-to-symmetry ratio and the coupling strength. This
reveals four different states in appropriate regions: the memory-retrieval state, where the
state of the system has a nonzero correlation with only one specific pattern; the temporal-
association state, where a temporal sequence of stored patterns is retrieved; the mixed-memory
state, where the system has the same nonvanishing correlation with all the stored patterns, and
the no-memory state, where the system has no appreciable correlation with any stored pattern.

There are four sections in this paper: section 2 introduces the network of coupled neuronal
oscillators with asymmetric coupling and the order parameter, which measures collective
synchronization in the system. The self-consistency equation for the order parameter is
derived, and the corresponding behaviour of the order parameter is examined both analytically
and numerically. Section 3, the main part of this paper, investigates the system with both
symmetric and asymmetric couplings, revealing four different states including the temporal-
association state. Typical behaviour of the order parameter in each state is shown, and the phase
boundaries are obtained on the plane of the asymmetry-to-symmetry ratio and the coupling
strength. Finally, a brief summary is given in section 4.

2. Asymmetric coupling

We consider a population of N neuronal oscillators, the ith of which is described by its phase
φi (i = 1, 2, . . . , N):

dφi
dt

= ωi −
N∑
j=1

Jij sin(φi − φj ) + γi(t). (1)

The intrinsic frequency ωi of the ith oscillator is randomly distributed over the whole system
according to the distribution g(ω), which is assumed to be smooth and symmetric aboutω = 0.
The second term on the right-hand side represents the coupling between the ith and the j th
neurons. The third term represents the white noise with zero mean and correlation

〈γi(t)γj (t ′)〉 = 2T δij δ(t−t ′)
where the noise strength T plays the role of the ‘effective temperature’ of the system.

In the case of the uniform coupling Jij = K/N , equation (1) reduces to the simple
oscillator system studied extensively [3, 4]. The symmetric coupling in the form

Jij = 2J

N

p∑
µ=1

cos(ξµi − ξµj ) (2)

has been employed in the network of neuronal oscillators, storing p patterns [12]. The number
ξ
µ

i (µ = 1, 2, . . . , p) describes the state (phase) of the ith neuron in the µth pattern; they are
random variables in the interval [0, 2π), following the distribution fµ(ξµ). It has been shown
that the system can indeed be in the memory-retrieval state characterized by a nonvanishing
macroscopic correlation with only one specific pattern [12]. Here such a memory-retrieval
state corresponds to the state in which collective synchronization sets in. Thus the transition
between the memory-retrieval state and the no-memory state, where all components of the order
parameter have vanishingly small values, is simply the synchronization–desynchronization
transition prevalent in networks of oscillators.
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We here examine how the asymmetric coupling affects the collective synchronization
behaviour governed by equation (1) and probe the possibility of temporal association, which
has not been observed in the system with symmetric coupling given by equation (2). For this
purpose, we consider the asymmetric coupling of the form

Jij = 2J

N

p∑
µ=1

cos(ξµi − ξµ−1
j ) (3)

where the cyclic boundary condition ξ 0
i = ξ

p

i has been chosen for the random patterns {ξµi }.
(The system with both symmetric and asymmetric couplings will be considered in the next
section.)

It is convenient to introduce the set of complex order parameters

�µ ≡ 1

N

N∑
j=1

ei(φj±ξµj ) = mµ±eiθµ± (4)

which characterizes the collective behaviour of the N -oscillator network described by
equation (1). Here mµ− measures the overlap between the state of the network and the pattern
ξµ while mµ+ are auxiliary order parameters. Thus a nonvanishing value of mµ− indicates the
appearance of synchronization. Taking into account equations (3) and (4), we write equation (1)
in the form

dφi
dt

= ωi − J
p∑
µ=1

[
m
µ−1
− sin(φi − θµ−1

− − ξµi ) +mµ−1
+ sin(φi − θµ−1

+ + ξµi )
]

+ γi(t) (5)

which, together with equation (4), constitutes the self-consistency equations for the order
parameter.

To determine the stationary properties of equation (5), we consider the probability density
P(φ, t;ω, ξµ) for the distribution of oscillators with phase φ at time t , and instead of the
Langevin equation (5), resort to the appropriate Fokker–Planck equation [13], which reads

∂P

∂t
= ∂

∂φ

(
∂V

∂φ
+ T

∂

∂φ

)
P (6)

with the potential given by

V (φ;ω, ξµ) ≡ −ωφ − J
p∑
µ=1

[
m
µ−1
− cos(φ − θµ−1

− − ξµ) +mµ−1
+ cos(φ − θµ−1

+ + ξµ)
]
. (7)

It is obvious that the stationary solution P (0)(φ;ω, ξµ) of the Fokker–Planck equation (6)
satisfies (

∂V

∂φ
+ T

∂

∂φ

)
P (0) ≡ S (8)

where S is determined by the normalization condition
∫ 2π

0 dφ P (0) = 1. We henceforth
concentrate on the noiseless case (T = 0) and seek the solution for mµ− with mµ+ = 0 for all
µ; this manifests the randomness of the distribution of ξµi . At T = 0 the stationary solution is
given by

P (0) =



δ[φ − α − sin−1(ω/JQ)] for |ω| � JQ√

ω2 − (JQ)2
2π |ω − JQ sin(φ − α)| for |ω| > JQ

(9)
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withQ and α defined according to

Qeiα ≡
p∑
µ=1

m
µ−1
− ei(ξµ+θµ−1

− ). (10)

Assuming self-averaging, we now express the average in equation (4) in terms of the
(stationary) probability distribution, which is expected to be valid in the zero-storage limit, i.e.
for finite p in the thermodynamic limit (p/N → 0), and write equation (4) in the form

m
µ
±eiθµ± =

〈〈∫ 2π

0
dφ ei(φ±ξµ) P (0)(φ;ω, ξµ)

〉〉
ω,ξµ

(11)

where 〈〈· · ·〉〉ω,ξµ denotes the average over the distributions of ω and ξµ. It is then
straightforward to compute the order parameter from equation (11) together with equation (9).
Substitution of the latter into the former yields, to the lowest order,

mµeiθµ =
√
π

8

J

σ

{
1 − 1

8

(
J

σ

)2
[

2
p∑′

k=1

(mk−1)2 + (mµ−1)2

]}
mµ−1eiθµ−1

(12)

where the frequency distribution and the pattern distribution have been chosen to be Gaussian
with variance σ 2 and uniform, respectively: g(ω) = (

√
2πσ)−1e−ω2/2σ 2

and fµ(ξµ) = 1/2π
for 0 � ξµ < 2π . The prime in the summation represents the restriction k �= µ whereas for
simplicity the subscripts (−) in mµ− and θµ− have been dropped.

It is obvious that equation (12) does not bear the solution of the type mµ ∝ δµ1.
Accordingly, unlike the symmetric coupling given by equation (2), the asymmetric coupling
in equation (1) does not allow the memory-retrieval state. We instead search for the mixed-
memory state, where all components of the order parameter tend to reach the same stationary
value (mµ = m for all µ). Equation (12) gives the solution for such a mixed-memory state:

m =




√
8

2p−1

(
1 −

√
8

π

σ

J

)1/2
σ

J
for J

σ
�
√

8
π

0 for J
σ
<

√
8
π

.

(13)

Thus the system with asymmetric coupling undergoes a transition from the no-memory state
into the mixed-memory state as J/σ is increased beyond the critical value

√
8/π . For a given

value of J/σ , the order parameter decreases with the number of stored patterns, proportional to
(2p−1)−1/2. Interestingly, in the system with symmetric coupling the critical value, separating
the memory-retrieval state from the no-memory state, is also given by (J/σ)c ≡ √

8/π [12],
suggestive of the duality between the two cases.

To confirm the above analytical results, we have also performed numerical simulations,
integrating directly the set of equations of motion (5) and computing the order parameter via
equation (4). Equation (5) for a system of N = 5000 oscillators has been integrated with
discrete time steps of %t = 0.01. Various values of the coupling strength J as well as the
number p of the stored patterns have been considered while the variance of the distribution of
intrinsic frequencies have been set equal to unity (σ = 1).

Figure 1 presents the obtained behaviour of the order parameter with time for J = 10 and
for (a) p = 3 and (b) p = 10. In both cases the system is in the mixed-memory state: each
component of the order parameter, which measures the correlation of the state with each pattern,
approaches the same value m after the initial transient time. For comparison, the behaviour
of the order parameter in the system with the symmetric coupling given by equation (2) is
shown in figure 2. Although the values of the parameters are the same (J = 10, σ = 1 and
p = 10), one component reaches a value close to unity (mµ=1 ≈ 1) while the others remain
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Figure 1. Behaviour of the order parameter with time in the mixed-memory state of the system
with asymmetric coupling. The coupling strength is J = 10 whereas the number of stored patterns
is (a) p = 3 and (b) p = 10. After the initial transient time all the components mµ of the order
parameter approach the same value.

0

t

µ = 2, 3, ... , 10 

µ = 1

0

0.5

1.0

mµ

Figure 2. Behaviour of the order parameter in the memory-retrieval state of the system with
symmetric coupling. The uppermost line near unity corresponds to mµ=1; other components
(µ �= 1) are shown to be negligibly small. Parameter values are the same as those in figure 1(b).
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Figure 3. Dependence of the stationary valuem of the order parameter upon the numberp of stored
patterns in the mixed-memory state. The data represented by diamonds, with the error bars estimated
by the standard deviations, are shown to be well fitted to the line given bym = 0.81×(p−0.5)−0.47.

vanishingly small (mµ �=1 ≈ 0), thus indicating the memory retrieval state. Figure 3 shows the
dependence of the stationary value of the order parameter upon the number of stored patterns in
the mixed-memory state, which is consistent with the analytical result,m ∝ (2p− 1)−1/2. We
thus conclude that the system with only asymmetric coupling as well as that with symmetric
coupling does not exhibit temporal association. To achieve temporal association, we need to
consider the system with both symmetric and asymmetric couplings.

3. Interplay of symmetric and asymmetric couplings

In this section we consider a network of neuronal oscillators with the synaptic coupling given
by the (weighted) sum of equations (2) and (3), and examine the interplay of the symmetric
coupling and the antisymmetric one. When both couplings are present, the set of equations of
motion (1) in the absence of noise assumes the form

dφi
dt

= ωi − J
p∑
µ=1

[
m
µ
− sin(φi − θµ− − ξµi ) +mµ+ sin(φi − θµ+ + ξµi )

]

− λJ
p∑
µ=1

[
m
µ−1
− sin(φi − θµ−1

− − ξµi ) +mµ−1
+ sin(φi − θµ−1

+ + ξµi )
]

(14)

where λ measures the asymmetric coupling strength relative to the symmetric one. The limit
λ → 0 corresponds to the case of symmetric coupling [12]; in the opposite limit λ → ∞
with λJ finite, equation (14) reduces to equation (5) describing the system with asymmetric
coupling. When both couplings are present, equation (14) resists simple analytical treatment,
making it inevitable to obtain numerically the behaviour of the order parameter. We have
thus integrated directly equation (14) with discrete time steps of %t = 0.01 and compute the
components of the order parameter mµ−, varying the asymmetry-to-symmetry ratio λ and the
coupling strength J .

Figure 4 presents the obtained behaviours of the order parameter in the system ofN = 5000
oscillators, with p = 10 stored patterns. Again the Gaussian distribution with unit variance
and the uniform distribution have been taken for the distributions of intrinsic frequencies and of
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Figure 4. Behaviour of the order parameter in the system with both symmetric and asymmetric
couplings. Simulations have been performed on the system of N = 5000 oscillators with p = 10
stored patterns, while the coupling strength J and the asymmetry-to-symmetry ratio λ are set equal
to (a) J = 1 and λ = 0.4; (b) J = 10 and λ = 0.1; (c) J = 10 and λ = 0.7 and (d) J = 10 and
λ = 0.4. All components of the order parameter assume negligibly small values in (a), describing
the no-memory state. (b) and (c) correspond to the memory-retrieval state and the mixed-memory
state, respectively. In (d), the details of which are shown in (e), each component mµ of the order
parameter reaches its maximum in succession, displaying temporal association.

stored patterns, respectively. In the plot the subscript (−) in the notationmµ− has been dropped
for convenience. Depending upon the values of λ and J , a variety of behaviours are displayed:
for weak coupling, each oscillator tends to oscillate according to its natural frequency rather
than displaying synchronization. The order parameter thus remains vanishingly small in the
resulting no-memory state, shown in figure 4(a). On the other hand, strong coupling gives
rise to collective synchronization characterized by nonvanishing values of the order parameter,
leading to the memory-retrieval state, the mixed-memory state or the temporal-association
state. When λ is small, the system is in the memory-retrieval state, which has a nonzero overlap
with only one specific pattern. Figure 4(b) shows that only one component (µ = 1) of the order
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−π

π
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200 

Figure 5. Time evolution of three arbitrarily chosen oscillators in the temporal-association state
shown in figure 4(d).

parameter takes the stationary value near unity, while the others (µ �= 1) remain substantially
small. Comparison of figures 2 and 4(a) shows that the presence of weak asymmetric coupling
does not alter the overall features of the memory-retrieval state, although it tends to raise
the stationary value of other components (µ �= 1). For large values of λ, the asymmetry
can be strong enough to make all components reach more or less the same stationary value.
The resulting mixed-memory state is presented in figure 4(c), the comparison of which with
figure 1(b) again indicates that the presence of weak symmetric coupling does not alter the
overall features of the mixed-memory state.

It is obvious that the mixed-memory state is stable in the asymmetric limit (λ→ ∞ with
λJ finite), whereas the memory-retrieval state is stable in the symmetric limit (λ → 0). In
between the two limits, i.e., for intermediate values of λ, each component mµ of the order
parameter oscillates with the same frequency, reaching its maximum in succession. Such
temporal association is manifested in figure 4(d), the details of which are shown in figure 4(e).
It should be pointed out that the temporal association cannot be achieved by either symmetric or
asymmetric coupling alone. The symmetric coupling tends to lead the system to the memory-
retrieval state by assigning different stationary values for the order parameter components
(see figure 2), while the asymmetric coupling encourages all the components to take the same
value (see figure 1). These two different tendencies are necessary for obtaining temporal
association. To characterize the temporal-association state, we have examined how the phase
of each oscillator evolves with time. In the memory-retrieval state, it evolves monotonically,
decreasing linearly with time. In contrast, figure 5, which displays the time evolution of
three arbitrarily chosen oscillators in the temporal-association state, reveals that each phase
exhibits an oscillation, with the same frequency as the order parameter, superposed with linear
behaviour. We have also probed the robustness of temporal association against noise. The
noise effects on temporal association are shown in figure 6, displaying the temporal behaviour
of the order parameter for the noise strength T = 1.2. It is observed that, although noise
induces fluctuations in the behaviour of the order parameter, the temporal-association state
persists for moderate noise. Obviously, noise of sufficiently large strength destroys such a
state, resulting in the no-memory state.

We have performed extensive simulations for various values of the coupling strength J
and the ratio λ, with the number of stored patterns set equal to p = 10. The obtained phase
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Figure 6. Behaviour of the order parameter in the presence of noise, displaying temporal
association. Simulations have been performed on the system of N = 5000 oscillators with p = 8
stored patterns and the noise strength T = 1.2, while the coupling strength J and the asymmetry-
to-symmetry ratio λ are set equal to J = 10 and λ = 0.4, respectively.
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Figure 7. Schematic phase diagram on the plane of the coupling
strength J and the asymmetry ratio λ, exhibiting boundaries
between the four states: the memory-retrieval state (MR), the
temporal-association state (TA), the mixed-memory state (MM)
and the no-memory state (NM). Solid curves are merely guides
to the eye. Simulations have been performed on the system of
N = 5000 oscillators with p = 10 stored patterns.

boundaries for the system of size N = 5000 are shown in figure 7, where the memory-
retrieval state (MR), the temporal-association state (TA), the mixed-memory state (MM) and
the no-memory state (NM) are identified on the (J, λ) plane. In determining the phase
boundary between the temporal-association state and the mixed-memory state, we have used
the following criterion: the system is considered to exhibit temporal association if the maximum
value of each order parameter component is larger than the minimum value of any component
during the time evolution. To check the size effects, we have also considered systems of various
sizes, from N = 625 to 20 000, via extensive simulations, which shows that the overall phase
boundaries do not change qualitatively. Quantitatively, it is revealed that the critical coupling
strength (J/σ)c, beyond which the symmetric system (λ = 0) is in the memory-retrieval state,
in general decreases with the system size N . Figure 8 manifests that the critical coupling
strength approaches the value (J/σ)c = 1.617 as the size N grows; this agrees well with
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Figure 8. Dependence of the critical coupling strength (J/σ)c upon the inverse system size N−1.
The least-squares fit, represented by the solid curve, demonstrates that (J/σ)c approaches 1.617
as N is increased.
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Figure 9. Schematic phase diagram for the system of N = 5000
oscillators with p = 8 stored patterns.

the analytical result (J/σ)c = (8/π)1/2, valid in the thermodynamic limit (N → ∞). In
addition, the location of the boundary between the temporal-association state and the mixed-
memory state tends to shift toward smaller values of λ, as the size is increased from N = 625
to N � 2500. For N � 5000, on the other hand, the phase boundaries appear to saturate,
indicating that finite-size effects are not substantial for N � 5000.

We have further investigated the dependence of the phase boundaries on the number of
stored patterns. Displayed in figure 9 is the schematic phase diagram, obtained from numerical
simulations on the system of N = 5000 oscillators with p = 8 stored patterns. Comparison
with figure 7, corresponding to the case ofp = 10, shows that the region of temporal association
shrinks near J � 2 and λ � 0.6. However, the overall boundaries still remain the same
qualitatively.
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4. Summary

We have studied the memory retrieval behaviour of a network of limit-cycle neuronal oscillators
with symmetric and asymmetric coupling. In the absence of the latter, the system exhibits a
transition from the no-memory state to the memory-retrieval state as the coupling strength is
increased. In the absence of the symmetric coupling, on the other hand, the self-consistency
equation for the order parameter can still be solved analytically, yielding the mixed-memory
state at strong (asymmetric) coupling strengths. In the presence of both, their interplay gives
rise to the additional temporal-association state, where the phase of each oscillator evolves non-
monotonically with time. The temporal-association state has been shown to be robust against
noise, persisting in the presence of even moderate noise. By means of extensive simulations,
we have obtained schematic phase boundaries between these four different states on the plane
of the asymmetry-to-symmetry ratio and the coupling strength. Here the size effects as well
as the dependence on the number of stored patterns have been examined. Also pointed out is
the apparent correspondence between the asymmetric limit and the symmetric one, with the
mixed-memory state as the counterpart of the memory-retrieval state; this raises the interesting
possibility of the duality present in the system, the investigation of which is left for further
study.
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